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We consider the statistical distribution of zeros of random meromorphic functions whose poles are indepen-
dent random variables. It is demonstrated that correlation functions of these zeros can be computed analyti-
cally, and explicit calculations are performed for the two-point correlation function. This problem naturally
appears in, e.g., rank-1 perturbation of an integrable Hamiltonian and, in particular, whitmetion poten-
tial is added to an integrable billiard.
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I. INTRODUCTION Solutions of the “Schrdinger” equation
The investigation of statistical properties of quantum en- H.¢,=Ey, ()

ergy levels of a given system is a long-standing problem

(see, e.g., Refd.1-3]). According to accepted conjectures can be expressed through solutions of the unperturbed equa-
energy levels of integrable systems behave as independeit@n

random variablesi.e., they obey Poisson statistidg], and ©).,(0) ©)

those of generic chaotic systems follow the random matrix H,o ¥, (n)=en,’'(n) (6)
predictions[5]. The proof of these conjectures in the full

generality is without doubt quite difficult, and is still lacking, @S

though partial resultéconcerning mostly integrable modgls

are availablgsee, e.g., Ref6] and references therginBut " :z c w(O)(n) @
there are systems which are neither integrable nor completely " nru '

chaotic for which quantum energy levels are defined by an

equation where(up to a factoy

f(E)=0, (1) (v]¢©(n))
T TEe, ®
with a well defined(and simple function f(E). In Ref. [7] :

the case of a polynomial equation provided new eigenvaluds obey the following quantization

N condition:
f(E)=2 a,E" (2)
= ely@m)P _ ©
. - . . n E—e, '
was considered, and statistical properties of solution of
f(E)=0 were calculated provided, be independent ran-
(E) P n P Here (v|¢(n)) == 0,4 (n).

dom variables. . . . .
The purpose of this paper is to consider the case of ran- This equation has the form of EB) with P(E) = const,

dom meromorohic functions of the form while unperturbed energy levels play the role of poles, and
P the residues are projections of unperturbed wave functions in

the directions of the perturbation vector

N
f(E)=P(E L 3
(=P H;lE—ej © ra=Kol @ ()2 (10)

whereP(E) is a polynomial, ana; andr; are, correspond- The addition of as-function potential
ingly, poles and residues ¢{E).
The natural example leading to the quantization condition V(X) =\ 8(X—Xg) (11)

in this form is the perturbation of a Hamiltonian by a rank-1 0

perturbation. IH ) is an unperturbed Hamiltonian, then the ¢orresponds exactly to a rank-1 perturbation. In this case

Hamiltonian after perturbation is (see, e.g., Ref$8,9]), Eq. (9) takes the form
H,,=H%+v,0,, 4 -

o = Hu o @ Gl "
wherev , is a perturbation vector. n E—e, ’
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where l/l(o)(X) and e, are e|genfunct|0ns and e|genva|ues of Our goal is to find the statistical distribution of solutida®f
the problem without theé-function potential. this equation, provided; are constants arld numberse; are

Another model which leads to similar equations is thelndependent random varlables with a common distribution
Bohr-Mottelson mode[10], which describes the interaction dx(e), which for simplicity we choose as follows:
of one level(denoted below by index)@vith all other levels.

The model is defined by the Hamiltonian ide if —W=<e<W
du(e)=1 2W J (17)
H=Ho+V, (13 0 otherwise.
where the interaction potential has nonzero matrix elementds the density of these poles is a constant, they can be con-
only between the chosen level and all other levels: sidered as eigenvalues of a two-dimensional integrable bil-
liard, and we shall call them energy levedls unperturbed
Voi=Vig, Vgo=Vij=0. (14  energy levels All our calculations also remain valid in a

more general case when the mean density of poles is not a
The energy levels of Hamiltoniafil3) obey the equation constant but is not changed noticeably in the scale of the
[10] mean pole separatiof.g., for three-dimensional integrable

modelg. The only difference is thail/2W below should be

Vg2 substituted for by the local mean density of polessee the
zj: E—e —(E—€9)=0, 15 end of Sec. Ii).
In general, if one is interested in solutions of the equation
which is again of the form of Eq.3), with a linear polyno- f(x,)=0, (18)

mial part.
A quite natural question appears: What is the statisticajt js often convenient to express the exact density of such
distribution of the new eigenvalugse., solutions of Eq(3)]  solutions,
provided that statistical distributions of poles and residues
are known? In Ref[11] it was proved that, if the unper-

turbed system is described by random matrix theory, the dis- p(X)= ; (X =Xp) (19)
tribution of new eigenvalues will also be of random matrix
type. in the following manner:

The main purpose of this paper is to compute analytically
the statistical distribution of solutions of E¢3) when the _ S(F(x ))d (x ) 20
polese; are independent random variabl@s., obey the
Poisson statistigsWe shall show that in this case the result-
ing statistics exhibits a level repulsion and differs from The main advantage of such a representation is the possibil-
known distributions. ity of calculating the statistical distribution of rooks, di-

The plan of the paper is the following. In Sec. Il the rectly from statistical distribution of coefficients df(x).
general formalism is described. In Sec. Ill a calculation ofThis method has been used for deriving the distribution of
the mean density is presented. In Sec. IV the two-point corfoots of random polynomialsr].
relation function is computed when all residugsn Eq. (3) In our case,
are the same. Generalization to different residues is dis-
cussed in Sec. VII. As the exact expression of the two-point
correlation function is cumbersome, in Sec. V the series ex-
pansion of the results is given. In Sec. VI the limiting behav-
ior of the two-point correlation function for small and large Representing thé function as the Fourier integréle., con-
energy differences is obtained without knowledge of the exsidering the characteristic function of the rgotsne obtains
act solution. The details of the calculation of a certain im-
portant integral are presented in the Appendix. (E) foc da [{ ( EN:

N
ri
)k21(E— )2 -

N
J
i§=:1E

p(E)=¢

N
Mk
—ex > —
2 = )L(E—ek)z
II. GENERAL FORMALISM (22

We consider the most interesting case of Bjwhenthe |t is this representation of the exact density that we shall use
mean separation of the poles is much smaller than a charagyroughout the paper. As adl’s are considered as indepen-

teristic scale of polynomiaP(E). Under such a condition dent random variables, this expressmn can be rewritten in the
this polynomial can be considered as a constant, and aftggrm

dividing by it Eq. (3) takes the form

i arJ N Ik
E)—f—e “H exp iz : >

(16)

Noor
i
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where all factors are also independent random variablegeduces the integral fok(a) [Eq. (29)] to a sum of two
which clearly permit one to find all mean values by straight-integrals,
forward integration.

(@) f +f‘E‘W 1-e 2 (3
e —e —'
I1l. MEAN DENSITY a (E+W)71 e t2

Let us start with a calculation of the mean density .
which can be transformed as follows:

JOC f(E+W)’1

—= J(E-w!

(24)  The first integral is equal tar|«|, and in the second integral
one can safely use perturbation theoryainThe final result

arl

j
E_ej) (@)=

da = N
<;)(E)>=f£6"“jﬂ1 f du(ej)exr{i
N

_ iatg
(1-e3. @33

M
X E——
=1 (E—ey)?

The integrals can be transformed as 1S
da N | — ial W-E 2 W 3 4
(E)= [ gee | 3 o] frj) |, 29 ()= mlal Halng g o’z TOM@) (4
2m k=1 J£k
where and
. =T S+ —— (35)
f(a)=f d,u(e)exr{lETJ (26) g(a)= W () 2w
and For small values ofx
= d ! S ““ﬁf - N +i2)], @36
g(a)—f M(e)(E—e)zeX IETe ——E (a). e 2 (rja)=ex WY |l I; , (36
(27)
wherev plays the role of a “bare” coupling constant,
Let us rewrite the expression féf«a) in the form
N
1
1 =— r, 3
fla)=1-551(a), (28) "N ,—21 J (37)
where andv’ is a “renormalized” coupling constant
W o 1 2w W-E
I(a)=f_wde 1—ex;{i§) . (29 U—,—N—v+'”W+E- (38)
As The necessity of renormalization for such type of equations
is well known when as-function potential is added to a
1 R d-dimensional system wit=2 [see, e.g., Ref8] and Egs.
g(a)= W —| (a), (30 (98) and (131)] where it is connected with a one-parameter
Ja

self-adjoint extension of a singular Hamiltonian. Physically
o the renormalization means that the limit of infinite small size
it is necessary to compute onlya). o impurity is not uniquely defined, and depends on internal
~ Though the above steps are exact for fifitethe most  getails of the scatterer. All physically measurable quantities
interesting case is the cade—c. In this limit only small (jike the cross sectiordepend only on the renormalized cou-
values ofa are important &~1/N), and it is necessary t0 pling constanty’. The bare coupling constant is not ob-
take into account in(a) only terms linear ine. servable, and can be arranged to produce @hyWhen a
Due to the singular character of the integtlr) [Ed.  specific model of small-size scatterer is considefed., a
(29)] one cannot just expand the integrand in poweeoff  hard disk with a small radisne obtains a concrete form of
E belongs to the support of the measureW<E<W, the  the bare(and renormalizedcoupling constant. Below we
change of variable consider the most interesting case when a renormalized cou-
pling constant is assumed to be independeiN Gr energy.
31) All other limits can be derived from this one. Note that in our

t= calculations the appearance of such renormalizdtien the

1
E—e
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fact that the bare coupling constantand the renormaliza- In Eq. (17) we have assumed the particular form of the

tion factor logiV—E)/(W+E) appear only in Eq(38)] is au-  distribution ofdw(e), but the results will be valid for any

tomatic. form of this measuréprovided that it is not changed notice-
Finally, when— W<E<W the density of state is the sum ably in the scale of the mean distance between lgweith

of two terms the substitutiondN/2W—p, E+ W—E—E,, and W—E

N W —Emax— E, where; is the local mean density of unpertu-
pin(E)= =— — _ (39 bated levels, andt,,;, and E,,., are minimal and maximal
" 2W  (W2—E2)(7%+1h'?) values of levels included in sui16).

AsNis assqmed to be Iz_irge, the first term dominates, and the V. TWO-POINT CORRELATION FUNCTION
mean density of levels is
Using the previously discussed method one can compute
higher correlation functions as well. Here we consider a cal-
(40) : , : _
culation of the two-point correlation functiolR,(E4,E>),

defined in the standard way,

— N
P~ owr

as it should be.
WhenE is beyond the intervdl— W, W] the calculation is Ry(E1,Eo)=(p(E1)p(E,)), (46)
simpler, as in this case there is no singularity on the contour

of integration and one can simply expand the integrand Of/vhere(- ..} denotes the mean value over all random vari-

I () on series ofa: ables.

For clarity we first consider the case where all residues

I(a)=ia|nE_W+a2 W +0(ad). (41) are equaly;=v. This case appears, e.g., whe@-function
E+W E2—W?2 potential is added to a rectangular billiard with periodic
boundary conditiongsee Eq.(98)]. A more general case

Therefore, with differentr; will be considered shortly in Sec. VIL.

When all residues are the same, our defining equation

(E)= |p(E)'| eXp( B ¢2(E)) 42 takes the form
Pout Nemo 202 |’ N
D 1 1 4
where HE-e v (47)
2
#(E)=In E+W_ i UZZL_ (43  and the two-point correlation function can be expressed as
E-W (E2—W?)N follows:
WhenN—o<®, 0—0, and deyda, N @y @y
R,(Eq,Ep)= f ex;{i ( )
p(E)— 8(E—Ey), (44) AELE < 42 21 E;—e Ex—e
whereE; is a root of equationp(E.)=0, N 1
1 kike=1 (Ey—e ) (B~ e,)?
EC=Wcoth2—,. (45)
v

Xe*(i/l})(a1+a2) ) (48)
These results correspond exactly to what one sees from a
simple geometrical picture of the roots of Ef6). The poles
e; divide the real axis intdN+1 intervals. Due to the pole After simple algebra this expression can be transformed to
behavior each interval contains one of the soluti@ds, here
is only one eigenvalue outside of the support of the initialr,(E, ,E,)
measure, and all oth&— 1 eigenvalues are distributed prac-
tically uniformly inside the initial interval —W,W]. The dadas N_1
second term in Eq(39) is a smooth bump, which is neces- _f A2 [N(F(a1,a2))" "g(as,az)
sary to insure that

W FN(N=1)(f(ay, @)V 2y (ar,a) o ag,az)]
f pin(E)dE=N—-1,
w

Xex%—l—(al-}—az)), (49)

which can easily be checked by noting thatZ E2—W?)
=d(1hv")lIE. where

036206-4
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f(al.a'Z):J d/J,(E)EX[{IEla—_l IEza_Ze>’
g(al,az):f dM(e)exp<iEla—_l+i E2a_2e>
y 1
(E;—e)%(E,—e)?’

B . ag . ap 1
(/fl(al’az)_f dM(e)exF(' E,—e Ez—e)(El—e)z’
(50)

_ . aq . ap 1
tﬂz(al,az)—f dl‘(e)eXp(' E,—e EZ—E)(EZ—e)Z'

We shall be interested in the distribution of eigenvalues in
side the interval —W,W], and therefore shall assume that

both argument&,; andE, belong to this interval.
Let us denote

1
f(al,a2)=1—m|(al,a2), (51)
where

w . ag
l(aq,a5)= W 1—-ex IEl_

Other functions are expressed throudly,«,) as follows:

ap
E2_ e

= +i de. (52

1 9
g(alyaz)Z—WFNal,az).

%3%
2

¢1(a1.a2)=m(?7€|(a1,a2),

(53

52
%lfz(al,az):mr“%'(al,az)-

The integrallEg. (52)] which defined (a4, a5) can be split

into three terms:
[

1 .o e a3
&R ! E,—e I E,—e

In the first integralwhich we denote byl( a4, a5)] singular

pointsE; andE, are on the contour of the integration. In the

[(ay,ap)=

X de.

(59

second and third integrals there are no singularities, and they

can be computed in perturbation theory @pand «,. In the

later integrals we will see that one needs only terms linear in

a, and

PHYSICAL REVIEW E63 036206

: =
[(aq,a)=d(ay,ar)+i alanTEl

It is the calculation of the first term which is difficult. The
details of this calculation are given in the Appendix. The
final result ford(a,,a,) is the

J(ay,az)=m(a+ ay)sgnay)

. a; a;
i(aq+ az)G( i

w

—ar

+[lazdo(§) +iv— al“231(§)]eXF{ [

e

X[sgn(ay) —sgraz)], (56)
wherew=E;—E,, £=(2/w)\— aja, and
G(x,y)=e‘yf Jo(2+yt)e'dt. (57)
X
The symmetry relations
Iy, 1) =J"(ay,ay),
J(_al,_az):J*(Oll,az), (58)

J—az,—a))=J(a;,ay)

are also useful. We are interested in the situation when the
difference of energie®@ =E; — E, is of the order of the mean
distance between the levels,

o2
N

w=

(59

and the dimensionless frequenQyis a constant. In this case
one can check that the important valuesaoWill also be of
the order of 1N, which explains why we have restricted the
expansion only up to linear terms. Other simplifications
come from the fact that in perturbation theory terpis.
(55)] one can sekE;=E,, after which they depend only on
the suma + as.

In the limit of largeN one obtaingsee the Appendjx

N .
fN(a’l,az):eX[{_ml(al,az)), (60)
1 1/ 9 d
g(alaaz):my ia @
a1 ap
X exr{l )d)(al,az) , (61
_ 1 L1y J
llfl(alva?)_m/ex I — Txlq)(al'%)’ (62
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1 al—az
oy, az)= W X ” ﬁqj(al as).
(63)
Here we introduce
- i
I(ay,ap)=d(ay,az) +(ay+az)—, (64)
U

wherev ' is the renormalized coupling constant as in B8)
and

2
C(ay,ap)= 27730( P alaz) O(—ajaz)sgnay).

PHYSICAL REVIEW E63 036206

a1~
i (70)
w
Combining these two expressions, one obtains
(N—-1
Ry(w)=— —)f dada,e” (N2W)T
(47W)?
7 i[9
X| ot — | —— 2g?,
2(96!1(9&2 (&al ﬂaz) (I) (71)

It is easy to check that under the scale transformatasi
suming\ >0)

aj—ANaj, (72)

w—Aw,

(65)
Therefore the pre-factor does not change, ane\T. Therefore, after
' the transformations
dada, 2W /[ 9 d N
o[ S8 2] 22 Nl
2(w) (47TW)2{ day  day Q=we (73
X[e'llarm el ] —N(N—-1) and
9 il(r— J N(N—-1)
N—22i[(a1—ar)w
X fN=2g2il(ar-ag)lw]) &TZCD . (66) Ry(w)= AW ro(Q), (74)
It is convenient to integrate the first term by parts: plus the corresponding change ef the dependence df
will disappear, and after the substitution
-1 2 el
&al aaz a|:Qa’i (75)
N=1( ., " ol 9 9 the resulting expression for the two-point correlation func-
__ - (a1~ aj)lw - H
W f¥"%e CD( Fa; r9a2)J tion takes the form
N—1 . dalda2 _ ~
—— | §N-2g2il(a1-ap)w] 2 ro(Q :—f—e 2m Q1]
- f fN-2g 02, 67 2(Q) P
Substituting this expression into the previous equation, one y 7 i J d P2e?i(a1-az)
ObtainS 2(9051(9&2 &al (96!2 '
~ N(N-1) ®? d (76)
R0 | St 5 where
d : ~ — . 1
X|—@ | p fN72e2il(@r—ag) el (68 Jay,ar)=d(ay, ) +i(ag+ar)—, (77)
day 2mv

The second useful form can be derived by the following

transformation of the second term:

d
N2
e’|— —
6’0[2 &al
52 i[ 0 J 1
= 4+ | —— — |+ — (I)Ze\l,,
20aday, w\da; day] 2

(69

where

and, from Eq.(A30),

— 1
Jay,ay)=— E(a1+ az)sgn ay)

+ IE‘{(C¥1+ ay)G(ay, —ay)

—[ia1do(2V—a;a3)
V- madi(2V= aar)Je )
X[sgn(a;)—sgna,)]. (78
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When ) —0 it is convenient to perform the integration by

parts,

rz(Q): - f dalda2872793

0293 43 3Qi_ . _
- 4 i(ay—ap) 2.2i(ay—ap)
2 6'011 o7a1 877-2q)e P7e ’
(79)
and take into account only the term linear(n
r,(Q)—QA, (80
where
3i .
A=—— | dayda, 3“2, (81
8

As in the regiona,a,<0®=27Jy(2V— a1a,), after the
change of variables

ay

§:2V_ala21 :_a_zv (82)
one obtains
3 (= =d ) i
=-— ng(g)dgfo 777e(35"2)(’7+’7 RS

(83

The integral overy equalsingl)(Bg) [see Eq.(A8)] and
the final expression foA is

A=372lim f:gJO[(sﬂ)g]Jg(g)dg. 84)

e—0

Here we write (3+ €) (wheree is proportional ta(}), as this
integral is a discontinuous integral and its value wlken0

is a half of the value foe—0. The last value can be com-

puted using the integrgRef.[15], p. 419
K(x)

1
—— 1
m2\a,aaza, KOO i x>1,

(85

if x<1

4
IT Jo(ant)tdt=
0 n=1

whereK(x) is the full elliptic integral of the second kind,

A
X= — (86)

Vaja,asa,’

and

4
16A2=]] (a;+a,+as+a,—2a,).

n=1

87

PHYSICAL REVIEW E63 036206

In our caseA —0 andK(0)= 7/2; therefore,

([ . 1
lim JO £Jo((3+€)£)Jp(Hdé= —=. (88)

e—0 27T\/§

Hence

(89

Note that the slope at the origin is independent on the cou-
pling constant, and differs from the prediction of the Gauss-
ian orthogonal ensembles of random matrices({})
—(7216)Q [2]].

To find the asymptotics of the two-point correlation func-
tion when Q) —oo, it is convenient to use E(68). After
rescaling of this expression one obtaiftke constant term
comes from thes-function contribution of derivatives

% 0
[“den|” dad b2V =arar)
+3(2V= aar)]

xexd —2mQJ+2i(a;— ay)]+c.c.

rz(Q):l+

(90

When ) —o the dominant contribution comes from the re-
gion of smalla. Taking into account that whea—0,

[N

~ . CY1+ a2
J=S(ar—ay)+i ,
27’

(91)

N

one concludes that the corresponding asymptotics of the two-
point correlation function is

Q)1+ (92)

O2(m2+1'?)’

Note the absence of oscillation on larfe typical of stan-
dard random matrix ensembles.

To check the above results we compute the statistical dis-
tribution of energy levels of a rectangular billiard with a
S-function potential insidgsometimes called the Seba bil-
liard [9]).

For a rectangle of sides andb, solutions of the Schro
dinger equation

(en—A)¥r(x)=0 (93
in two dimensions with periodic boundary conditions have
the form

2T 2w
i —nx+i—my

- 1
(X)) = \/ﬁex a b (94)

If the left-hand side is negative the above integral is equal to

Zero.

and

036206-7
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2@ \?2 (27 \?
eh= ?n + ?m (95)

for all (positive and negatiyentegersn andm.

As |:(x)|2=1/ab for all levels, Eq.(12), which deter-
mines energy levels after the introduction ofégfunction
potential[Eqg. (11)], takes the form

N(s)

v, —=1, (96)

with v=N\/ab.

Unperturbed eigenvalues have a multiplicity(fér non-
zerom, n) due to the existence of positive and negative
values ofm andn. To remove this degeneracy, in the above 2 2
sum we consider only positive integers, and to attain the s

same mean density_:% ab/4m) we divide all eigenvalues by

4, after which eigenvalues included in the sum are

a 2 a 2

—n| +|—m|, (97) ) L .

a b The thin solid line represents the cumulative nearest-

neighbor distribution for the so-called semi-Poisson model
andm,n>0. [12,13, which serves as a reference point in models with
Sum (96) formally diverges and for computation we con- intermediate statistics

sider the renormalization

FIG. 1. Nearest-neighbor distribution for a Seba billiard with
periodic boundary conditions. The dashed line is the GOE result.
The thin line is the semi-Poisson curve.

er=

Ngp(s)=1—(2s+1)e %S (102

1% 1 —(Emax 1

= —pf de——|=1, (99
( E—e, E—e) It is clearly seen that the cumulative nearest-neighbor distri-

bution for the Seba billiard is quite far from the GOE result

where E,,;, and E,,,, are minimal and maximal values of and it is in between the semi-Poisson curve and the GOE

energy included in the sum. The subtracted integrahsid-  CUrve.

ered the principal valyes equal to 10gEa—E)/(E—Emin), The numerically computed two-point correlation function

and one obtains the same relation between bare and rend@r this model is plotted in Fig. 2. The two curves in this

malized coupling constants as bef¢of. Eq. (39)]:

1 1 Ena— E
—==+log =—. (99
v’ pu E—Enmin 1t .

We takev'=1, and compute 100 000 energy levels for such
a model. In Fig. 1 the cumulative nearest-neighbor distribu-
tion of these leveld\(s), is presented. This quantity is equal
to the integral over the nearest-neighbor distribution,

o

a
2
-

05 r i
N(S)=f p(s’)ds’, (100
0
and it is better defined numerically than the usual nearest:
neighbor distribution. In the same figure two other curves are
presented. The dashed line corresponds to the Wigner sui ¢, > 4
mise for the cumulative nearest-neighbor distribution in the Q
g?ussmn orthogonal ensemil8OB) of random matrices FIG. 2. The two-point correlation function for a Seba billiard
’ with periodic boundary conditions. Solid lines correspond to the
5 asymptoticq Egs. (80) and (92)] for small and large values of the
Ngog(s)=1—e ™7, (10D  energy difference.
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figure correspond to theoretical predictions for small and 1 * men

large values of the argument given by E¢80) and (92),
respectively.

V. SERIES EXPANSIONS

The above expressions are quite cumbersome. Therefore
it is of interest to represent them as power expansions. W

start with a functionG(x,y) defined in Eq(A32). It is con-
venient to define

G(x,y)=ig(t,s), (103
where
t=ix,

(104

Using the standard formula for the Bessel function

s=iy.

B i X 2m+n 1
00=2, 3 109
one obtains
e (OGS (9" L
g(t's)_mzo m! nzm T
LR DL
=1—m§0 - ngo - el*s.  (106)
Expanding the exponent leads to
o (=DM(=9)"
g(t,s)=l—m§;0WR(m,n), (107)
n m-n+1-1
Rmm=2 Cy(-1)' 2 Cr(-1) (108

andCy, are the binomial coefficients. Only terms for which
the upper limits in these sums are non-negative are included

in the summation. But

L
kZO CK(—D*=(-1)'C_:

(109
therefore,
n
R(m,n):(_l)m+n—l|§0 CLCm:2+|_l

=(—1pmn-ich, . (110

Finally we obtain

* mgh

g(t,s>=1+m;=0 T Crem-1- (112)

Using Eq.(A33), one can show that

_ - 2 ~n-1
- m\](al,aZ)_s_Ft—’_zn,;)l min! Cn+m721
(112
where, as beford=—ia,/w ands=ia;/w.

The expansion of the pre-exponent factor in E&f) can
Bé simplified by the identityRef. [15], p. 32

o)

2 =
(@) mzo m!(m+2n)![(m+n)!]2

(=1)™(2m+2n)! ( z>2m+2n
2

(113
One obtains

” 2m)!
o+ R=14 3, —

m=1[m!¥(m+1)! ()™

(114

Changinga,— — a, we can rewrite Eq(90) in the form

ro,(Q)=1+ f dada,P(aq,a))
0

xex;{—ﬂ

Xexq2i(ag+ay)+2mQQ(ay,ay)]+cC.C.,
(119

I
T+ —
!

i
al—Q( T —,) ay
v

where

o

P(al,a2)=l+2 (zm)!

3, T o e (19

and
© m_n
. ayay
Q(alvaZ):n%l men m!n! CﬂJrr%an' (117}

VI. LIMITING BEHAVIOR

The above formulas give exact expressions for the two-
point correlation function for the problem considered, but
they are quite cumbersome and suitable mostly for numerical
calculations. The most interesting information which one can
extract from them is the behavior of the two-point correlation
function at small and larg€’s. The purpose of this section
is to discuss methods which permit one to find these asymp-
totics without a knowledge of the exact solution.

It is clear that in order to find the behavior of the two-
point correlation function in the limib— 0 it is necessary to
consider only the case when three initial levéigich we
shall denotee,, e,, ande;) are close to each other, and all
other levels are far from this triplet. In other words, only
three terms in Eq(47) are large. In such a case E@7),
which should determine the positions of the two nearest lev-
els, can be approximated as follows:
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1 1 1

1 . .
e tE e T E e " (118 IM[F(E)]=lim 5 [F(E+ie)~F(E-ie)], (127

e—0

(Note the absence of the coupling constafibe solution of  taken over positive.

this equation is The derivation of Eq.(126) is simple. The function 1
—\G(E) has zeros aE; and poles ag,; therefore,

ejtete; 1 ———
Eiom——g — ig\/eﬁ e5+e5—e,6,— ;83— €,€;.

J 1 1
(119 a—Eln[l—vG(E)]=; E_Ej—Zk e o (129

This expression is translationally invariant; therefore, onerpe first term in Eq.(126) cancels the poles from unper-
can assume tha, +e,+e;=0 and the difference between trpeq levels, and the imaginary part produces-fanction
two adjacent levels is singularity at the required positions.

) Let us denote

AE=ﬁ\/ei+e§—e1e2. (120 G.(E)=G(E=ie), (129

wheree is positive ande— 0. In calculating the mean values
it is useful to take explicitly into account the mean values of
G.(E). Using the relation

After corresponding rescaling the two-point correlation func-
tion at the limitQ)—0 takes the form

_1 2 1 1_
rz(Q)—z ol Q 73 e1te;—ee;|dede;. :P;+|775(x), (130

X*+ie
(121) _
one finds

The factor} comes from the restrictioe; <e,. Changing

variablese;=r cosd ande,=r sin ¢, and performing the in- — T it (W+ E)
tegral overr, one obtains (G (B))=+miptplog W-E/’ (131
3 de where;is the mean level density of the nonperturbed states.
D=8 | T-sinscose" (122 introducing
The last integral is equal to# /3, and finally, in the limit 9:(E)=G+(E)=(G=(E)), (132
of small () we obtain that one can write
V3 1-vG.(E)=[1-v(G.(E))][1-Ag-(E)], (133
)= 2[9 (123 vG.(E)=[1-v(G.(E))][1-\g=(E)], (133
where
which coincides with resul89), obtained above by a differ- ,
ent method. oz O (134
To compute the behavior of the two-point correlation T op(lxim’)’
function at large&} it is convenient to use a method based on
the usual trace formula. Let us define andv’ is a renormalized coupling constant as in E2B):
S L1 2k (135
— - —_— == n .
G(2)=2, e (124 o 5o "WiE

where alle; are independent random variables as before. The density of statefignoring the small correction to the
We need to calculate the density of levélsdefined by =~ mean density of state as in E@9)] now will take the form

the equation _ 1
p(B)=p—5—=[9+(E)—9-(B)]

vG(E) =1 (125
; ; 1 9
Formally this density can be expressed as 5 E{Iog[l—)\+g+(E)]— log{1—\_g_(E)]}.
1 1%
p(E)=——Im G(E)+ —Zlog[1-vG(E)]|, (126 (136
The two-point correlation function is the mean value of the
where the symbol IfF (E)] means the limit product of two such expressions at different energies. The
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computation of the mean value can be done in perturbation

> da,da .
theory by expanding this expression into powersgof E) RZ(EI,EZ):f ! > 2 ilartar)
and using a formula —> 4w
N
(9" (E1)g™(E,)) ngl reg(reas,reas) Jl;[k f(rjaq,rjas)
_f de
P] (Ei—etie)(E;—e—ie) +k§k2rklrkz‘ﬂl(rklal'rklaz)
=2mi(—1)""1pcnt _ 1+0(w)], (137 Xio(ar fean) 1] f(riag,riap)
=2i( )" pChin-2 m+n—1[ (w)], 2k, @10 Tk, ®2) ja¢i.hjaz),
(w) j#kq ko
(141
where w=E;—E,. Therefore, one can organize the pertur-
bation series in a series of inverse powefwof wheref(ay,az), 9(ay,a;), andyi(ay,a,) are the same as
Taking into account the first terms in the expansion of then Egs. (50). Repeating the same steps as in Sec. IV, one
logarithm in the above expression, one obtains obtains exact expressions for the two-point correlation func-

tion. The analog of Eq(.76) (which is convenient for calcu-
lation of the small€) series of the two-point correlation func-

— 1 d d , .
= 1=y = 1y = tion) has the following form:

138 -
( ) rZ(Q)Z—jMe2W0<J(ra1’ra2)>iQU(al*“z)/v'
4772
At large o
” ir( )\ 2
X| —m Ir(ay—ay
Ddaria, L (ranraze )

— 1 d
Ro(w)=p T )\+a_Elg+(El)gf(E2) .
+1

I P ir(ag— )
— al_a’
a9, (P(rag,raye )

+(E;—~Ej) +c.c.

X(D(ray,ray)rel (@)l (142

2

:_2+ —_,
P o (T +1'?)

(139 Instead of Eq(90), useful for largef) asymptotics, one ob-

tains

which agrees with E((92) derived from the general formula. r,(Q)
We stress that the methods used in this section are not

restriqted to particular_casgs considered. They glso can be 14 wda 0 da e,ZWQ(J—(,al,,az)%mv(almz)lu,
used in more general situations where exact solutions are not o )72
available, e.g., for rank-2 perturbatiofteso short-range im- .
purities and similar problems. X[(rI3(2r = ayay)e (a1 a2)2
VIl. GENERAL CASE +(r3f2r V= ajap)e" 17 ?)?]+c.c.f . (143

In previous sections we considered the calculation of the ) _
two-point correlation function under the assumption ofHere(f(r)) denotes the mean value over all residues:
equality of all residues. Here a generalization of these calcu-
lations to the case of different residues is presented. 1 )

When the residues are different, instead of Ety) one (f(r)= N 12'1 f(rp); (144
has the equation

N

functionsJ(aq,a,) and®(aq,a,) are defined in EqH78)
N r and (A1l) andv andv’ are “bare” and “renormalized”
Z E e L (140 coupling constantfsee Eqs(37) and(38)].
=1 ! As in Sec. IV it is of interest to compute the behavior of
the two-point correlation function at small and large energy
and, consequently, instead of E@9) one obtains a more differences. Whei)— 0, integration by parts as in Sec. IV
general relation leads to
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ro(Q)—QA, (145

where

= 5 ((I) rag,ra,)re' a2y

daqd
A_J’ a0a;

4

X(D(ray,ray)e (@1 a2)2

+{(D(ray,ray)re @ )2(d(r al,raz)e”(“l"Z))}.

(146

Using Eq.(All) this triple sum is transformed to the form

[cf. with Eq. (83)]

- N
_'_32

B
rir
|Jk12J K

« j:gngo(rig)Jomf)Jomf)

=d
<[4,
o7

According to Eq.(A8) the last integral equalsmH§[(r;
+rj+r)él; therefore

(Tt UnER o o

(147

N
272

A=— >

+r r
N3 ijk=1 (2 K

><J:§d§30(rif)Jo(fjg)Jo(fkf)Jo[(fi+rj+rk)§]-

(148

Taking into account Eq@85), and symmetrizing the answer,

one obtains

N (v +v -3
A:Zi E (ri+r]~+rk) .
6 N3i k=1 rif il

Of course, when all residues are equik 7+/3/2 as in Eq.
(89).
When{— <, from Eg. (143 one obtains

(149

oo 0
rz(Q)—>1+<r>2f dalf da2
0 —o0
@~ U m(lag]+la)] = (/v ) @+ az) 4 ¢ o

2
=1+ —, (150
Q3(w?+1h'?) ¢

which differs from Eq.(92) only by a suitable definition of
the coupling constant.

Note that Eq(149) is valid only for nonzero values of the

residues. Otherwise, the prefactdiformally diverges. This

PHYSICAL REVIEW E63 036206

divergence is a consequence of the simple fact that when
=0 there exist certain energy levels exactly equal to unper-
turbed levels. Therefore, the set of new energy levels con-
sists of two parts. The first includes energy levels which are
changed by the perturbation. Their correlation function is
given by the formulas above, where only nonzero residues
are taken into account. The second part consists of energy
levels which are not changed by the perturbation. Their cor-
relation functions are the same as for the Poisson process
and, in particular, they do not display level repulsion. As the
cross-correlations betweda finite number of the old and
new energy levels disappear whBin-o, the resulting sta-
tistics is a superposition of two independent distributions
and, in general, it will not have level repulsidne., R(€)
#0 whene—0].

The above case is realized e.g., whes-function poten-
tial [Eqg. (11)] is added to a rectangular billiard with the
Dirichlet boundary conditions and the positions of the singu-

lar point[ioz(xo,yo)] are commensurable with the corre-
sponding sides of the rectangulax éndb). In this model
unperturbed wave functions are determined by two integers
andm,

2w _(77 151
wn—\/%sm anx sin bmy (151
and the residues are
=25 S|n2< nxo)smz( myo) (152
If
X
Xo _P1 Yo_ P2 (153

for coprime integerp; andq; there exists only a finite num-
ber of different residues depending on valmesiod q; and
m mod g,. In particular, whem is divisible byq, or mis
divisible by g,, r;=0. This means that for all these values
of n andm wave functions and energy eigenvalues will not
be changed by the perturbation, and the resulting distribution
(included all energy levelswill not describe level repulsion.
Another interesting case corresponds to a model when all
residues are also independent random variables with a prob-
ability du(r). If r; never take very small valugsnore pre-
cisely, the mean value of {f is finite) the only modification
is that a mean value over residué$(r)), should be taken
over the given distribution i.e., instead of E444) one has
to use

f(r)>=f f(r)du(r). (154

In particular the value of the prefactéris
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T (ry+ry+rg)° 1 ——
A= 7 | dutrdutrdu(ry 2 R—
1fafs S

(155 iy

However, if the probability of small values of residues is ,
large, certain expansions should be modified. A natural ex- 7
ample is, e.g., the Seba billiard with Dirichlet boundary con- A
ditions, when ratios of the positions of the singularity to the /)
corresponding sidd@s in Eq.(153)] are noncommensurable 2 *°f N/
irrational numbers. In this casg, defined in Eq(152), are /’/
equivalent to random variables /o

rz}:%sinzd’l sif ., (156 v

where anglegp; and ¢, are uniformly distributed between 0

and .
Now the two-point correlation function at smdll will

differ from Eq. (145. Indeed, a formal calculation of pref-

actor (155 shows that it diverges at small and that its
leading behavior is

0 2 4
S
FIG. 3. Nearest-neighbor distribution for a Seba billiard with

Dirichlet boundary conditions. The dashed line is the GOE result.
The thin line is the semi-Poisson curve. The dotted line is the Pois-

2 son prediction.
T 1
A= 2 (r)< \/F> ' (157 (150)] values of arguments are also indicated for comparison
by thick solid lines. The value of), in Eq. (160, Q,
However, for variableg156) =52.25, has been obtained by fitting expressi@60) to
numerical result for smak).
4 T 2 1
(ry= U sifgpde| =— (158
m?ab\ Jo ab VIIl. CONCLUSION
and We have analytically computed the two-point correlation
function for zeros of random meromorphic functions with a
1 Jab/ [ de |2 Jab ) large number of poles, when these poles are independent
/752 (f i ) ~ o3 In® o, (159 random variables. It was demonstrated that the statistics of
\/F 2 $oSiNG 2

these zeros corresponds to a distribution with level repulsion

where ¢, is a cutoff of the integration oveg. With loga-  Which differs from known examples. The resulting distribu-

rithmic accuracyg, is proportional to€), ¢o—Q/Q,, and,
when—0,

1
r(Q)— —39 In*(Q/ Q). (160 1+
8

The results of numerical calculations of 100 000 levels of the
Seba billiard with Dirichlet boundary conditiofsvith irra-
tional ratios(153) andv'=1] are presented in Figs. 3 and 4.
In Fig. 3 the cumulative nearest-neighbor distribution is plot-
ted. The dashed and thin solid lines are the same as in Fig. 1 95 |,
the dotted line corresponds to the Poisson distribution

7, (Q)

Np(s)=1—e"* (161)
Note that the computed distribution is quite far from all stan-
dard examples. Though the resulting distribution is closer to ‘
the Poisson distribution than the one for a Seba billiard with 0 2 4
periodic boundary conditionsee Fig. 1, one can check that Q
this d'lfference will be present for all nonzero values of the  FiG. 4. The two-point correlation function for a Seba billiard
coupling cons'_[an(and In _parthU|a_r Whem’—m)_. _ with Dirichlet boundary conditions. The solid lines correspond to
The two-point correlation function is shown in Fig. 4. The the asymptotic§Egs. (160 and(150)] for small and large values of
limiting behavior for smal[see Eq(160] and larggsee Eq. the energy difference.
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tion is not universal but depends on residues. The following standard integrals will be useful for (see
A natural example, where energy levels obey such meroRef.[14]). When Imu>0 and ImB2u<0,
morphic equation, corresponds to a rectangular billiard with
a short-range impurity, and our results show the spectral sta- Jwt” ) r{ ( B2
ex
2

tistics of these models. It is of interest that different bound- t— T

dtZZBVeiVW/ZK,V(IB,LL),

ary conditions give very different results. Even the (A7)
asymptotic behavior for small energy difference is different
[cf. Egs.(80) and (160)]. and when Imu>0 and Img%u>0,

We also proposed methods which permit one to find the
behavior of the two-point correlation function at small and w 2
| : : ) B
arge arguments without a knowledge of the exact solution. t" ltex t+—
These methods can be applied for cases where exact solu- 2

tions are not available.

}dt—mﬁ e " ™PHL(Bu).
(A8)

HereK ,(x) andH{P(x)=J,(x) +iY(x) are the Macdonald
and Hankel functions, respectively.

The purpose of this appendix is to compute the main in- Note thatKy(x) is a real function; therefore,
tegral[Eq. (52)]:

APPENDIX

Jw L aq t Ay dt
W L R o\t | T
= — —® 1
I(aq,a5) f_w 1 ex;{lEl_eﬂEz_e) de.
(A1) _fw F{.al az) dt
=| expgl—|t——]|——cC.C
i X . 0 w alt t
Let us first derive a few useful relations,
0 |f a'la2>0
J J 3 _ 2
Gy day)Ye1 @) ZWiJO( - alaz)sgr(al) if @ya,<0,
de
(A9)
=iw ex )
f F< Ei— Ez e) (E1—e)(Ex—e)
A2) andJy(x) is the Bessel function of zero order. Finally,
J J a)1— ay
where (&Tvl_ — )J(al,az) exp( - )q)(al,az),
In this integral we perform a change of variable where
1) 2
El_e:m' (A4) D(ay,ay)=2md PR T O(— ajaz)sgn(ay),
(Al
Now
O(x)=1 if x>0, and®(x)=0 if x<0. Note that
E tw E E _ tw?
2~ € 1+t (E;—e)(Ex—e)= (1+0)?’ 52 1
o"alaazq)(al'aZ):Eq)(al’aZ)' (A12)
w
de= (1+t)2dt' (AS) Using the same method one can prove the following set of
equalities:
Hence )
d a1~

i . a2
J(al,az):_;ex%l )@(al,az).

d d J c?alé?az
Ja;  da, (a1,a2) (A13)
a1~ * aq %) dt 2 _
=—|ex;< )f exp{ (t——) —. 9 i@y 9
1) —w ) at)]t &aiJ(QLQZ) exp | ° 3(11@(“1:“2)-
(A6) (A14)
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5? 3 B Lag—ap| d o
75 (ar,a7)=—exg i ® r‘z (aq,ay).
(A15)
ot X ) 1( d ;
——Jay,a0)=——| —— Jda
ﬁa%&ag Lo w?\day 2
a1 ap
X .
eX[<| o (I)(al,az)
(Al6)

Note that the differentiation of functio® produces thes
functions coming from the factor

O(— ayay)sga;)=3[sgn a;) —sgn(a,)]. (AL7)
From Eq.(Al4) it follows that the second derivative

2

—dag, @)= di(ag, @)
@,

(A18)
is known. Therefore,

L?J(O,lez) ay
J(alyaz):J(o,a2)+—l+fo (a1=Y) (Y, az)dy,

Ja
(A19)
whereJ(0,a,) anddJ(0,a,)/da, are values off and its first

derivative ata;=0.
In Sec. Ill it was demonstrated that

J(0,a0) = 1| @y,
and, symmetrically,
J(@1,00= 'n'|a1|.

As the second derivatives is equal to zero whemy,>0,

the expression ofl in these regions, which is continuous

when crossing thex; and a, axes, is

Jay,ax)=m(a;+az)sgnas). (A20)

It is clear that the functiod(«; ,@5) is a continuous function
but with discontinuous first derivatives. The values of these
discontinuities follow from the above discontinuity of the

function ®.
Therefore, in the region

a1>0, a2<0, a1+ a2<0

(which is the continuation of the lower left squasig<<0,
a,<0 through the negative, axis) the functionJ(ay,a,)
should take the form

Jaqg,ar)=—m(ar,+a))+27a,exp —iay/w)

+ foal(al—y)¢0(y,a2)dy, (A21)

PHYSICAL REVIEW E63 036206

where

a,— a

1%
¢o(a1,az)=exp<i )r“lfﬁ(al,az), (A22)

and

(A23)

2
¢(al,012):277~]o( VT a1

(O]

coincides with the functionb but without a discontinuous
factor.

After integration by parts and certain transformations, one
obtains that in all regions

Jay,ay)=m(a;+ ay)sgnay)

. ap ag
—Iar |(a1+ az)G( - Z,Z)

+[a230<§>+i¢—a1azal<§>]exp(i “1;“2”

X[sgrla;) —sgras)], (A24)
whereé= (2/w)\— a;a, and
G(x,y)=eiyfoc\]0(2 Jybe'tdt. (A25)
The functionG(x,y) obeys the relations
G(x, .
O sa(pe . (a26)
0D _ e
o= ;Jl(g)e Y, (A27)

where£=2.Xy. To prove the second identity, note that
IG(Xy)

[ t) .
—e'yf iJo+J. \/:> e'tdt. A28
oy | NotdoVy (A28)

But the integrand is equal to

J )
—i [y J5(2\ty)e)], (A29)
and asJ,= —J; one obtains the above relation.
The functional equation
G(x,y)+G(y,x)=i+iJo(£)e*V (A30)

can be proved by comparing derivatives of both sides, and
noting that the integralRef. [14], p. 50

fmJ (at)e” "tdt= Lexp( — a_Z) (A31)
0 ° (2y) 4y

requires thalG(0y)=i.
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Wheny<x the above integral can be taken indefinitely by _
parts, which leads to the expansion Iy, ax)=m(art az)sgnaz) — mo|i(y—X)G(X,y)
_iniXtiy 0 H n d d
G(xy)=ie HZO (=17)"3n(8), (A32) + xg—yw G(x,y) [sgn(x)+sgr(y)],

where 7= \/y/x and é=2xy. The above collection of for- (A33)

mulas permits one to find the expansion®fx,y) for all
values of its arguments. Another useful representation of our
integral is wherex=—a,/w andy= o, /.
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