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Singular statistics
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We consider the statistical distribution of zeros of random meromorphic functions whose poles are indepen-
dent random variables. It is demonstrated that correlation functions of these zeros can be computed analyti-
cally, and explicit calculations are performed for the two-point correlation function. This problem naturally
appears in, e.g., rank-1 perturbation of an integrable Hamiltonian and, in particular, when ad-function poten-
tial is added to an integrable billiard.
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I. INTRODUCTION

The investigation of statistical properties of quantum e
ergy levels of a given system is a long-standing probl
~see, e.g., Refs.@1–3#!. According to accepted conjecture
energy levels of integrable systems behave as indepen
random variables~i.e., they obey Poisson statistics! @4#, and
those of generic chaotic systems follow the random ma
predictions@5#. The proof of these conjectures in the fu
generality is without doubt quite difficult, and is still lacking
though partial results~concerning mostly integrable model!
are available~see, e.g., Ref.@6# and references therein!. But
there are systems which are neither integrable nor comple
chaotic for which quantum energy levels are defined by
equation

f ~E!50, ~1!

with a well defined~and simple! function f (E). In Ref. @7#
the case of a polynomial equation

f ~E!5 (
n50

N

anEn ~2!

was considered, and statistical properties of solution
f (E)50 were calculated providedan be independent ran
dom variables.

The purpose of this paper is to consider the case of
dom meromorphic functions of the form

f ~E!5P~E!1(
j 51

N
r j

E2ej
, ~3!

whereP(E) is a polynomial, andej and r j are, correspond-
ingly, poles and residues off (E).

The natural example leading to the quantization condit
in this form is the perturbation of a Hamiltonian by a rank
perturbation. IfHmn

(0) is an unperturbed Hamiltonian, then th
Hamiltonian after perturbation is

Hmn5Hmn
(0)1vmvn , ~4!

wherevm is a perturbation vector.
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Solutions of the ‘‘Schro¨dinger’’ equation

Hmncn5Ecm ~5!

can be expressed through solutions of the unperturbed e
tion

Hmn
(0)cn

(0)~n!5encm
(0)~n! ~6!

as

cm5(
n

cncm
(0)~n!, ~7!

where~up to a factor!

cn5
^vuc (0)~n!&

E2en
, ~8!

provided new eigenvaluesE obey the following quantization
condition:

(
n

z^vuc (0)~n!& z2

E2en
51. ~9!

Here ^vuc (0)(n)&5(mvmcm
(0)(n).

This equation has the form of Eq.~3! with P(E)5const,
while unperturbed energy levels play the role of poles, a
the residues are projections of unperturbed wave function
the directions of the perturbation vector

r n5 z^vuc (0)~n!& z2. ~10!

The addition of ad-function potential

V~x!5ld~xW2xW0! ~11!

corresponds exactly to a rank-1 perturbation. In this c
~see, e.g., Refs.@8,9#!, Eq. ~9! takes the form

l(
n

ucn
(0)~xW0!u2

E2en
51, ~12!
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wherecn
(0)(xW ) anden are eigenfunctions and eigenvalues

the problem without thed-function potential.
Another model which leads to similar equations is t

Bohr-Mottelson model@10#, which describes the interactio
of one level~denoted below by index 0! with all other levels.
The model is defined by the Hamiltonian

H5H01V, ~13!

where the interaction potential has nonzero matrix eleme
only between the chosen level and all other levels:

V0i5Vi0 , V005Vi j 50. ~14!

The energy levels of Hamiltonian~13! obey the equation
@10#

(
j

uV0 j u2

E2ej
2~E2e0!50, ~15!

which is again of the form of Eq.~3!, with a linear polyno-
mial part.

A quite natural question appears: What is the statist
distribution of the new eigenvalues@i.e., solutions of Eq.~3!#
provided that statistical distributions of poles and resid
are known? In Ref.@11# it was proved that, if the unper
turbed system is described by random matrix theory, the
tribution of new eigenvalues will also be of random mat
type.

The main purpose of this paper is to compute analytica
the statistical distribution of solutions of Eq.~3! when the
poles ej are independent random variables~i.e., obey the
Poisson statistics!. We shall show that in this case the resu
ing statistics exhibits a level repulsion and differs fro
known distributions.

The plan of the paper is the following. In Sec. II th
general formalism is described. In Sec. III a calculation
the mean density is presented. In Sec. IV the two-point c
relation function is computed when all residuesr j in Eq. ~3!
are the same. Generalization to different residues is
cussed in Sec. VII. As the exact expression of the two-po
correlation function is cumbersome, in Sec. V the series
pansion of the results is given. In Sec. VI the limiting beha
ior of the two-point correlation function for small and larg
energy differences is obtained without knowledge of the
act solution. The details of the calculation of a certain i
portant integral are presented in the Appendix.

II. GENERAL FORMALISM

We consider the most interesting case of Eq.~3! when the
mean separation of the poles is much smaller than a cha
teristic scale of polynomialP(E). Under such a condition
this polynomial can be considered as a constant, and a
dividing by it Eq. ~3! takes the form

(
j 51

N
r j

E2ej
51. ~16!
03620
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Our goal is to find the statistical distribution of solutionsE of
this equation, providedr j are constants andN numbersej are
independent random variables with a common distribut
dm(e), which for simplicity we choose as follows:

dm~e!5H 1

2W
de if 2W<ej<W

0 otherwise.

~17!

As the density of these poles is a constant, they can be
sidered as eigenvalues of a two-dimensional integrable
liard, and we shall call them energy levels~or unperturbed
energy levels!. All our calculations also remain valid in a
more general case when the mean density of poles is n
constant but is not changed noticeably in the scale of
mean pole separation~e.g., for three-dimensional integrab
models!. The only difference is thatN/2W below should be
substituted for by the local mean density of poles,r̄ ~see the
end of Sec. III!.

In general, if one is interested in solutions of the equat

f ~xn!50, ~18!

it is often convenient to express the exact density of s
solutions,

r~x!5(
n

d~x2xn!, ~19!

in the following manner:

r~x!5d„f ~x!…Ud f~x!

dx U. ~20!

The main advantage of such a representation is the poss
ity of calculating the statistical distribution of rootsxn , di-
rectly from statistical distribution of coefficients off (x).
This method has been used for deriving the distribution
roots of random polynomials@7#.

In our case,

r~E!5dS (
j 51

N
r j

E2ej
21D (

k51

N
r j

~E2ej !
2

. ~21!

Representing thed function as the Fourier integral~i.e., con-
sidering the characteristic function of the roots!, one obtains

r~E!5E
2`

` da

2p
expF iaS (

j 51

N
r j

E2ej
21D G (

k51

N
r k

~E2ek!
2

.

~22!

It is this representation of the exact density that we shall
throughout the paper. As allej ’s are considered as indepen
dent random variables, this expression can be rewritten in
form

r~E!5E da

2p
e2 ia)

j 51

N

expS i
ar j

E2ej
D (

k51

N
r k

~E2ek!
2

,

~23!
6-2
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where all factors are also independent random varia
which clearly permit one to find all mean values by straig
forward integration.

III. MEAN DENSITY

Let us start with a calculation of the mean density

^r~E!&5E da

2p
e2 ia)

j 51

N E dm~ej !expS i
ar j

E2ej
D

3 (
k51

N
r k

~E2ek!
2

. ~24!

The integrals can be transformed as

^r~E!&5E da

2p
e2 iaS (

k51

N

r kg(r ka))
j Þk

f ~r ja!D , ~25!

where

f ~a!5E dm~e!expS i
a

E2eD ~26!

and

g~a!5E dm~e!
1

~E2e!2
expS i

a

E2eD52
]2

]a2
f ~a!.

~27!

Let us rewrite the expression forf (a) in the form

f ~a!512
1

2W
I ~a!, ~28!

where

I ~a!5E
2W

W

deF12expS i
a

E2eD G . ~29!

As

g~a!5
1

2W

]2

]a2
I ~a!, ~30!

it is necessary to compute onlyI (a).
Though the above steps are exact for finiteN, the most

interesting case is the caseN→`. In this limit only small
values ofa are important (a'1/N), and it is necessary to
take into account inI (a) only terms linear ina.

Due to the singular character of the integralI (a) @Eq.
~29!# one cannot just expand the integrand in power ofa. If
E belongs to the support of the measure,2W,E,W, the
change of variable

t5
1

E2e
~31!
03620
s
-
reduces the integral forI (a) @Eq. ~29!# to a sum of two
integrals,

I ~a!5S E
(E1W)21

`

1E
2`

(E2W)21D ~12eiat!
dt

t2
, ~32!

which can be transformed as follows:

I ~a!5S E
2`

`

2E
(E2W)21

(E1W)21D ~12eiat!
dt

t2
. ~33!

The first integral is equal topuau, and in the second integra
one can safely use perturbation theory ina. The final result
is

I ~a!5puau1 ia ln
W2E

W1E
1a2

W

E22W2
1O~a3! ~34!

and

g~a!5
p

W
d~a!1

1

E22W2
. ~35!

For small values ofa

e2 ia )
j 51

N

f ~r ja!5expF2
N

2W
vS puau1 i

a

v8
D G , ~36!

wherev plays the role of a ‘‘bare’’ coupling constant,

v5
1

N (
j 51

N

r j , ~37!

andv8 is a ‘‘renormalized’’ coupling constant

1

v8
5

2W

Nv
1 ln

W2E

W1E
. ~38!

The necessity of renormalization for such type of equatio
is well known when ad-function potential is added to a
d-dimensional system withd>2 @see, e.g., Ref.@8# and Eqs.
~98! and ~131!# where it is connected with a one-parame
self-adjoint extension of a singular Hamiltonian. Physica
the renormalization means that the limit of infinite small si
impurity is not uniquely defined, and depends on inter
details of the scatterer. All physically measurable quantit
~like the cross section! depend only on the renormalized co
pling constantv8. The bare coupling constantv is not ob-
servable, and can be arranged to produce anyv8. When a
specific model of small-size scatterer is considered~e.g., a
hard disk with a small radius! one obtains a concrete form o
the bare~and renormalized! coupling constant. Below we
consider the most interesting case when a renormalized
pling constant is assumed to be independent ofN ~or energy!.
All other limits can be derived from this one. Note that in o
calculations the appearance of such renormalization@i.e., the
6-3
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fact that the bare coupling constantv and the renormaliza
tion factor log(W2E)/(W1E) appear only in Eq.~38!# is au-
tomatic.

Finally, when2W,E,W the density of state is the sum
of two terms

r in~E!5
N

2W
2

2W

~W22E2!~p211/v82!
. ~39!

As N is assumed to be large, the first term dominates, and
mean density of levels is

r̄5
N

2W
, ~40!

as it should be.
WhenE is beyond the interval@2W,W# the calculation is

simpler, as in this case there is no singularity on the cont
of integration and one can simply expand the integrand
I (a) on series ofa:

I ~a!5 ia ln
E2W

E1W
1a2

W

E22W2
1O~a3!. ~41!

Therefore,

rout~E!5
uf~E!8u

A2ps
expS 2

f2~E!

2s2 D , ~42!

where

f~E!5 ln
E1W

E2W
2

1

v8
, s25

4W2

~E22W2!N
. ~43!

WhenN→`, s→0, and

r~E!→d~E2Ec!, ~44!

whereEc is a root of equationf(Ec)50,

Ec5W coth
1

2v8
. ~45!

These results correspond exactly to what one sees fro
simple geometrical picture of the roots of Eq.~16!. The poles
ej divide the real axis intoN11 intervals. Due to the pole
behavior each interval contains one of the solutions,E. There
is only one eigenvalue outside of the support of the ini
measure, and all otherN21 eigenvalues are distributed pra
tically uniformly inside the initial interval@2W,W#. The
second term in Eq.~39! is a smooth bump, which is nece
sary to insure that

E
2W

W

r in~E!dE5N21,

which can easily be checked by noting that 2W/(E22W2)
5](1/v8)/]E.
03620
he

ur
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In Eq. ~17! we have assumed the particular form of t
distribution of dm(e), but the results will be valid for any
form of this measure~provided that it is not changed notice
ably in the scale of the mean distance between levels! with
the substitutionsN/2W→ r̄, E1W→E2Emin , and W2E

→Emax2E, where r̄ is the local mean density of unpertu
bated levels, andEmin and Emax are minimal and maxima
values of levels included in sum~16!.

IV. TWO-POINT CORRELATION FUNCTION

Using the previously discussed method one can comp
higher correlation functions as well. Here we consider a c
culation of the two-point correlation function,R2(E1 ,E2),
defined in the standard way,

R2~E1 ,E2!5^r~E1!r~E2!&, ~46!

where ^•••& denotes the mean value over all random va
ables.

For clarity we first consider the case where all residu
are equal,r j5v. This case appears, e.g., when ad-function
potential is added to a rectangular billiard with period
boundary conditions@see Eq.~98!#. A more general case
with different r j will be considered shortly in Sec. VII.

When all residues are the same, our defining equa
takes the form

(
j 51

N
1

E2ej
5

1

v
, ~47!

and the two-point correlation function can be expressed
follows:

R2~E1 ,E2!5K E da1da2

4p2
expF i (

j 51

N S a1

E12ej
1

a2

E22ej
D G

3 (
k1 ,k251

N
1

~E12ek1
!2~E22ek2

!2

3e2( i /v)(a11a2)L . ~48!

After simple algebra this expression can be transformed

R2~E1 ,E2!

5E da1da2

4p2
@N„f ~a1 ,a2!…N21g~a1 ,a2!

1N~N21!„f ~a1 ,a2!…N22c1~a1 ,a2!c2~a1 ,a2!#

3expS 2
i

v
~a11a2! D , ~49!

where
6-4
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f ~a1 ,a2!5E dm~e!expS i
a1

E12e
1 i

a2

E22eD ,

g~a1 ,a2!5E dm~e!expS i
a1

E12e
1 i

a2

E22eD
3

1

~E12e!2~E22e!2
,

c1~a1 ,a2!5E dm~e!expS i
a1

E12e
1 i

a2

E22eD 1

~E12e!2
,

~50!

c2~a1 ,a2!5E dm~e!expS i
a1

E12e
1 i

a2

E22eD 1

~E22e!2
.

We shall be interested in the distribution of eigenvalues
side the interval@2W,W#, and therefore shall assume th
both argumentsE1 andE2 belong to this interval.

Let us denote

f ~a1 ,a2!512
1

2W
I ~a1 ,a2!, ~51!

where

I ~a1 ,a2!5E
2W

W F12expS i
a1

E12e
1 i

a2

E22eD Gde. ~52!

Other functions are expressed throughI (a1 ,a2) as follows:

g~a1 ,a2!52
1

2W

]4

]a1
2]a2

2
I ~a1 ,a2!,

c1~a1 ,a2!5
1

2W

]2

]a1
2

I ~a1 ,a2!, ~53!

c2~a1 ,a2!5
1

2W

]2

]a2
2

I ~a1 ,a2!.

The integral@Eq. ~52!# which definesI (a1 ,a2) can be split
into three terms:

I ~a1 ,a2!5S E
2`

`

2E
2`

2W

2 ÈWD
3F12expS i

a1

E12e
1 i

a2

E22eD Gde. ~54!

In the first integral@which we denote byJ(a1 ,a2)] singular
pointsE1 andE2 are on the contour of the integration. In th
second and third integrals there are no singularities, and
can be computed in perturbation theory ona1 anda2. In the
later integrals we will see that one needs only terms linea
a, and
03620
-

ey

in

I ~a1 ,a2!5J~a1 ,a2!1 i S a1 ln
W2E1

W1E1
1a2 ln

W2E2

W1E2
D .

~55!

It is the calculation of the first term which is difficult. Th
details of this calculation are given in the Appendix. T
final result forJ(a1 ,a2) is the

J~a1 ,a2!5p~a11a2!sgn~a2!

2pF i ~a11a2!GS 2
a2

v
,
a1

v D
1@a2J0~j!1 iA2a1a2J1~j!#expS i

a12a2

v D G
3@sgn~a1!2sgn~a2!#, ~56!

wherev5E12E2 , j5(2/v)A2a1a2 and

G~x,y!5eiyE
x

`

J0~2Ayt!eitdt. ~57!

The symmetry relations

J~a2 ,a1!5J* ~a1 ,a2!,

J~2a1 ,2a2!5J* ~a1 ,a2!, ~58!

J~2a2 ,2a1!5J~a1 ,a2!

are also useful. We are interested in the situation when
difference of energiesv5E12E2 is of the order of the mean
distance between the levels,

v5V
2W

N
, ~59!

and the dimensionless frequencyV is a constant. In this cas
one can check that the important values ofa will also be of
the order of 1/N, which explains why we have restricted th
expansion only up to linear terms. Other simplificatio
come from the fact that in perturbation theory terms@Eq.
~55!# one can setE15E2, after which they depend only on
the suma11a2.

In the limit of largeN one obtains~see the Appendix!

f N~a1 ,a2!5expS 2
N

2W
Ĩ ~a1 ,a2! D , ~60!

g~a1 ,a2!5
1

2W

1

v2 S ]

]a1
2

]

a2
D

3FexpS i
a12a2

v DF~a1 ,a2!G , ~61!

c1~a1 ,a2!5
1

2W
expS i

a12a2

v D ]

]a1
F~a1 ,a2!, ~62!
6-5



on

ng

c-

BOGOMOLNY, GERLAND, AND SCHMIT PHYSICAL REVIEW E63 036206
c2~a1 ,a2!52
1

2W
expS i

a12a2

v D ]

]a2
F~a1 ,a2!.

~63!

Here we introduce

Ĩ ~a1 ,a2!5J~a1 ,a2!1~a11a2!
i

v8
, ~64!

wherev8 is the renormalized coupling constant as in Eq.~38!
and

F~a1 ,a2!52pJ0S 2

v
A2a1a2DQ~2a1a2!sgn~a1!.

~65!

Therefore,

R2~v!5E da1da2

~4pW!2 H N fN21
2W

v2 S ]

]a1
2

]

]a2
D

3@ei [(a12a2)/v]F#2N~N21!

3 f N22e2i [(a12a2)/v]F ]

]a1
FGF ]

]a2
FG J . ~66!

It is convenient to integrate the first term by parts:

E f N21S ]

]a1
2

]

]a2
D @ei [(a12a2)/v]F#

5
N21

2W E f N22ei [(a12a2)/v]FS ]

]a1
2

]

]a2
D J

5
N21

2W E f N22e2i [(a12a2)/v]F2. ~67!

Substituting this expression into the previous equation,
obtains

R2~v!5
N~N21!

~4pW!2 E da1da2H F2

v2
2F ]

]a1
FG

3F ]

]a2
FG J f N22e2i [(a12a2)/v] . ~68!

The second useful form can be derived by the followi
transformation of the second term:

eCF ]

]a2
FGF ]

]a1
FG

5F ]2

2]a1]a2
1

i

v S ]

]a1
2

]

]a2
D1

1

v2GF2eC,

~69!

where
03620
e

C52i
a12a2

v
. ~70!

Combining these two expressions, one obtains

R2~v!52
N~N21!

~4pW!2 E da1da2e2(N/2W) Ĩ

3F ]2

2]a1]a2
1

i

v S ]

]a1
2

]

]a2
D GF2eC. ~71!

It is easy to check that under the scale transformation~as-
sumingl.0)

v→lv, a i→la i , ~72!

the pre-factor does not change, andĨ →l Ĩ . Therefore, after
the transformations

V5
N

2W
v ~73!

and

R2~v!5
N~N21!

4W2
r 2~V!, ~74!

plus the corresponding change ofa, the dependence ofN
will disappear, and after the substitution

a i5Va i ~75!

the resulting expression for the two-point correlation fun
tion takes the form

r 2~V!52E da1da2

4p2
e22pV J̃

3F ]2

2]a1]a2
1 i S ]

]a1
2

]

]a2
D GF2e2i (a12a2),

~76!

where

J̃~a1 ,a2!5 J̄~a1 ,a2!1 i ~a11a2!
1

2pv8
, ~77!

and, from Eq.~A30!,

J̄~a1 ,a2!52
1

2
~a11a2!sgn~a2!

1
i

2
$~a11a2!G~a1 ,2a2!

2@ ia1J0~2A2a1a2!

1A2a1a2J1~2A2a1a2!#ei (a12a2)%

3@sgn~a1!2sgn~a2!#. ~78!
6-6
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When V→0 it is convenient to perform the integration b
parts,

r 2~V!52E da1da2e22pV J̃

3FV2

2

] J̃

]a1

] J̃

]a1
1

3V i

8p2
Fei (a12a2)GF2e2i (a12a2),

~79!

and take into account only the term linear inV,

r 2~V!→VA, ~80!

where

A52
3i

8p2 E da1da2F3e3i (a12a2). ~81!

As in the regiona1a2,0 F52pJ0(2A2a1a2), after the
change of variables

j52A2a1a2, h52
a1

a2
, ~82!

one obtains

A52
3p i

2 E
0

`

jJ0
3~j!djE

0

`dh

h
e~3j i /2!(h1h21)1c.c.

~83!

The integral overh equalsipH0
(1)(3j) @see Eq.~A8!# and

the final expression forA is

A53p2 lim
e→0

E
0

`

jJ0@~31e!j#J0
3~j!dj. ~84!

Here we write (31e) ~wheree is proportional toV), as this
integral is a discontinuous integral and its value whene50
is a half of the value fore→0. The last value can be com
puted using the integral~Ref. @15#, p. 414!

E
0

`

)
n51

4

J0~ant !tdt5
1

p2Aa1a2a3a4
H K~x! if x,1

1

x
K~x! if x.1,

~85!

whereK(x) is the full elliptic integral of the second kind,

x5
D

Aa1a2a3a4

, ~86!

and

16D25 )
n51

4

~a11a21a31a422an!. ~87!

If the left-hand side is negative the above integral is equa
zero.
03620
o

In our caseD→0 andK(0)5p/2; therefore,

lim
e→0

E
0

`

jJ0~~31e!j!J0
3~j!dj5

1

2pA3
. ~88!

Hence

A5
pA3

2
'2.72 . . . . ~89!

Note that the slope at the origin is independent on the c
pling constant, and differs from the prediction of the Gau
ian orthogonal ensembles of random matrices@r 2(V)
→(p2/6)V @2##.

To find the asymptotics of the two-point correlation fun
tion when V→`, it is convenient to use Eq.~68!. After
rescaling of this expression one obtains~the constant term
comes from thed-function contribution of derivatives!

r 2~V!511H E
0

`

da1E
2`

0

da2@J0
2~2A2a1a2!

1J1
2~2A2a1a2!#

3exp@22pV J̃12i ~a12a2!#1c.c.J . ~90!

WhenV→` the dominant contribution comes from the r
gion of smalla. Taking into account that whena→0,

J̃→ 1

2
~a12a2!1 i

a11a2

2pv8
, ~91!

one concludes that the corresponding asymptotics of the t
point correlation function is

r 2~V!→11
2

V2~p211/v82!
. ~92!

Note the absence of oscillation on largeV, typical of stan-
dard random matrix ensembles.

To check the above results we compute the statistical
tribution of energy levels of a rectangular billiard with
d-function potential inside~sometimes called the Seba bi
liard @9#!.

For a rectangle of sidesa and b, solutions of the Schro¨-
dinger equation

~enW2D!cnW~xW !50 ~93!

in two dimensions with periodic boundary conditions ha
the form

cnW~xW !5
1

Aab
expS i

2p

a
nx1 i

2p

b
myD ~94!

and
6-7
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enW5S 2p

a
nD 2

1S 2p

b
mD 2

~95!

for all ~positive and negative! integersn andm.
As ucnW(xW )u251/ab for all levels, Eq.~12!, which deter-

mines energy levels after the introduction of ad-function
potential@Eq. ~11!#, takes the form

v(
nW

1

E2enW
51, ~96!

with v5l/ab.
Unperturbed eigenvalues have a multiplicity 4~for non-

zero m, n) due to the existence of positive and negat
values ofm andn. To remove this degeneracy, in the abo
sum we consider only positive integers, and to attain
same mean density (r̄5ab/4p) we divide all eigenvalues by
4, after which eigenvalues included in the sum are

enW5S p

a
nD 2

1S p

b
mD 2

, ~97!

andm,n.0.
Sum~96! formally diverges and for computation we co

sider the renormalization

v8

r̄ S (
nW

1

E2en
2 r̄E

Emin

Emax
de

1

E2eD 51, ~98!

where Emin and Emax are minimal and maximal values o
energy included in the sum. The subtracted integral~consid-
ered the principal value! is equal to log(Emax2E)/(E2Emin),
and one obtains the same relation between bare and re
malized coupling constants as before@cf. Eq. ~38!#:

1

v8
5

1

r̄v
1 log

Emax2E

E2Emin
. ~99!

We takev851, and compute 100 000 energy levels for su
a model. In Fig. 1 the cumulative nearest-neighbor distri
tion of these levels,N(s), is presented. This quantity is equ
to the integral over the nearest-neighbor distribution,

N~s!5E
0

`

p~s8!ds8, ~100!

and it is better defined numerically than the usual near
neighbor distribution. In the same figure two other curves
presented. The dashed line corresponds to the Wigner
mise for the cumulative nearest-neighbor distribution in
Gaussian orthogonal ensemble~GOE! of random matrices
@2#:

NGOE~s!512e2ps2/4. ~101!
03620
e

or-

h
-
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ur-
e

The thin solid line represents the cumulative neare
neighbor distribution for the so-called semi-Poisson mo
@12,13#, which serves as a reference point in models w
intermediate statistics

Ns.P~s!512~2s11!e22s. ~102!

It is clearly seen that the cumulative nearest-neighbor dis
bution for the Seba billiard is quite far from the GOE res
and it is in between the semi-Poisson curve and the G
curve.

The numerically computed two-point correlation functio
for this model is plotted in Fig. 2. The two curves in th

FIG. 1. Nearest-neighbor distribution for a Seba billiard w
periodic boundary conditions. The dashed line is the GOE res
The thin line is the semi-Poisson curve.

FIG. 2. The two-point correlation function for a Seba billia
with periodic boundary conditions. Solid lines correspond to
asymptotics@Eqs. ~80! and ~92!# for small and large values of the
energy difference.
6-8
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figure correspond to theoretical predictions for small a
large values of the argument given by Eqs.~80! and ~92!,
respectively.

V. SERIES EXPANSIONS

The above expressions are quite cumbersome. There
it is of interest to represent them as power expansions.
start with a functionG(x,y) defined in Eq.~A32!. It is con-
venient to define

G~x,y!5 ig~ t,s!, ~103!

where

t5 ix, s5 iy . ~104!

Using the standard formula for the Bessel function

Jn~x!5 (
m50

` S x

2D 2m1n 1

m! ~m1n!!
, ~105!

one obtains

g~ t,s!5 (
m50

`
~2t !m

m! (
n5m

`
~2s!n

n!
et1s

512 (
m50

`
~2t !m

m! (
n50

m21
~2s!n

n!
et1s. ~106!

Expanding the exponent leads to

g~ t,s!512 (
m,n50

`
~2t !m~2s!n

m!n!
R~m,n!, ~107!

R~m,n!5(
l 50

n

Cn
l ~21! l (

k50

m2n1 l 21

Cm
k ~21!k, ~108!

andCm
n are the binomial coefficients. Only terms for whic

the upper limits in these sums are non-negative are inclu
in the summation. But

(
k50

L

Cm
k ~21!k5~21!LCm21

L ; ~109!

therefore,

R~m,n!5~21!m1n21(
l 50

n

Cn
l Cm21

m2n1 l 21

5~21!m1n21Cn1m21
n . ~110!

Finally we obtain

g~ t,s!511 (
m,n50

`
tmsn

m!n!
Cn1m21

n . ~111!

Using Eq.~A33!, one can show that
03620
d

re,
e

ed

2
1

p iv
J~a1 ,a2!5s1t12 (

n,m>1

`
tmsn

m!n!
Cn1m22

n21 ,

~112!

where, as before,t52 ia2 /v ands5 ia1 /v.
The expansion of the pre-exponent factor in Eq.~68! can

be simplified by the identity~Ref. @15#, p. 32!

Jn
2~z!5 (

m50

`
~21!m~2m12n!!

m! ~m12n!! @~m1n!! #2 S z

2D 2m12n

.

~113!

One obtains

J0
2~j!1J1

2~j!511 (
m51

`
~2m!!

@m! #3~m11!!
~a1a2!m.

~114!

Changinga2→2a2 we can rewrite Eq.~90! in the form

r 2~V!511E
0

`

da1da2P~a1 ,a2!

3expF2VS p1
i

v8
D a12VS p2

i

v8
D a2G

3exp@2i ~a11a2!12p iVQ~a1 ,a2!#1c.c.,

~115!

where

P~a1 ,a2!511 (
m51

`
~2m!!

@m! #3~m11!!
~2a1a2!m ~116!

and

Q~a1 ,a2!5 (
n,m>1

`

i m1n
a2

ma1
n

m!n!
Cn1m22

n21 . ~117!

VI. LIMITING BEHAVIOR

The above formulas give exact expressions for the tw
point correlation function for the problem considered, b
they are quite cumbersome and suitable mostly for numer
calculations. The most interesting information which one c
extract from them is the behavior of the two-point correlati
function at small and largeV ’s. The purpose of this section
is to discuss methods which permit one to find these asy
totics without a knowledge of the exact solution.

It is clear that in order to find the behavior of the tw
point correlation function in the limitv→0 it is necessary to
consider only the case when three initial levels~which we
shall denotee1 , e2, ande3) are close to each other, and a
other levels are far from this triplet. In other words, on
three terms in Eq.~47! are large. In such a case Eq.~47!,
which should determine the positions of the two nearest l
els, can be approximated as follows:
6-9
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1

E2e1
1

1

E2e2
1

1

E2e3
50. ~118!

~Note the absence of the coupling constant.! The solution of
this equation is

E1,25
e11e21e3

3
6

1

3
Ae1

21e2
21e3

22e1e22e1e32e2e3.

~119!

This expression is translationally invariant; therefore, o
can assume thate11e21e350 and the difference betwee
two adjacent levels is

DE5
2

A3
Ae1

21e2
22e1e2. ~120!

After corresponding rescaling the two-point correlation fun
tion at the limitV→0 takes the form

r 2~V!5
1

2 E dS V2
2

A3
Ae1

21e2
22e1e2D de1de2 .

~121!

The factor 1
2 comes from the restrictione1,e2. Changing

variablese15r cosu ande25r sinu, and performing the in-
tegral overr, one obtains

r 2~V!5
3

8
VE du

12sinu cosu
. ~122!

The last integral is equal to 4p/A3, and finally, in the limit
of small V we obtain that

r 2~V!5
pA3

2
V, ~123!

which coincides with result~89!, obtained above by a differ
ent method.

To compute the behavior of the two-point correlati
function at largeV it is convenient to use a method based
the usual trace formula. Let us define

G~z!5(
i 51

N
1

z2ei
, ~124!

where allei are independent random variables as before
We need to calculate the density of levelsEj defined by

the equation

vG~Ej !51. ~125!

Formally this density can be expressed as

r~E!52
1

p
ImFG~E!1

]

]E
log@12vG~E!#G , ~126!

where the symbol Im@F(E)# means the limit
03620
e

-

Im@F~E!#5 lim
e→0

1

2i
@F~E1 i e!2F~E2 i e!#, ~127!

taken over positivee.
The derivation of Eq.~126! is simple. The function 1

2lG(E) has zeros atEj and poles atek ; therefore,

]

]E
ln@12vG~E!#5(

j

1

E2Ej
2(

k

1

E2ek
. ~128!

The first term in Eq.~126! cancels the poles from unpe
turbed levels, and the imaginary part produces ad-function
singularity at the required positions.

Let us denote

G6~E!5G~E6 i e!, ~129!

wheree is positive ande→0. In calculating the mean value
it is useful to take explicitly into account the mean values
G6(E). Using the relation

1

x6 i e
5P

1

x
7 ipd~x!, ~130!

one finds

^G6~E!&57p i r̄1 r̄ logS W1E

W2ED , ~131!

wherer̄ is the mean level density of the nonperturbed sta
Introducing

g6~E!5G6~E!2^G6~E!&, ~132!

one can write

12vG6~E!5@12v^G6~E!&#@12lg6~E!#, ~133!

where

l65
v8

r̄~16 ipv8!
, ~134!

andv8 is a renormalized coupling constant as in Eq.~38!:

1

v8
5

1

r̄v
1 ln

W2E

W1E
. ~135!

The density of states@ignoring the small correction to the
mean density of state as in Eq.~39!# now will take the form

r~E!5 r̄2
1

2p i
@g1~E!2g2~E!#

2
1

2p i

]

]E
$ log@12l1g1~E!#2 log@12l2g2~E!#%.

~136!

The two-point correlation function is the mean value of t
product of two such expressions at different energies. T
6-10
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computation of the mean value can be done in perturba
theory by expanding this expression into powers ofg6(E)
and using a formula

^g1
n ~E1!g2

m~E2!&

'r̄E de

~E12e1 i e!n~E22e2 i e!m

52p i ~21!n21r̄Cm1n22
n21 1

~v!m1n21
@11O~v!#, ~137!

wherev5E12E2. Therefore, one can organize the pertu
bation series in a series of inverse power ofv.

Taking into account the first terms in the expansion of
logarithm in the above expression, one obtains

r~E!5 r̄2
1

2p i F S 12l1

]

]EDg1~E!2S 12l2

]

]EDg2~E!G .
~138!

At large v

R2~v!5 r̄22
1

4p2 S l1

]

]E1
g1~E1!g2~E2!

1~E1↔E2!1c.c.D
5 r̄21

2

v2~p211/v82!
, ~139!

which agrees with Eq.~92! derived from the general formula
We stress that the methods used in this section are

restricted to particular cases considered. They also can
used in more general situations where exact solutions are
available, e.g., for rank-2 perturbations~two short-range im-
purities! and similar problems.

VII. GENERAL CASE

In previous sections we considered the calculation of
two-point correlation function under the assumption
equality of all residues. Here a generalization of these ca
lations to the case of different residues is presented.

When the residues are different, instead of Eq.~47! one
has the equation

(
j 51

N
r j

E2ej
51, ~140!

and, consequently, instead of Eq.~49! one obtains a more
general relation
03620
n

-

e

ot
be
ot

e
f
u-

R2~E1 ,E2!5E
2`

` da1da2

4p2
e2 i (a11a2)

3 (
k51

N

r k
2g~r ka1 ,r ka2! )

j Þk
f ~r ja1 ,r ja2!

1 (
k1Þk2

r k1
r k2

c1~r k1
a1 ,r k1

a2!

3c2~r k2
a1 ,r k2

a2! )
j Þk1 ,k2

f ~r ja1 ,r ja2!,

~141!

where f (a1 ,a2), g(a1 ,a2), andc i(a1 ,a2) are the same as
in Eqs. ~50!. Repeating the same steps as in Sec. IV, o
obtains exact expressions for the two-point correlation fu
tion. The analog of Eq.~76! ~which is convenient for calcu-
lation of the small-V series of the two-point correlation func
tion! has the following form:

r 2~V!52E da1da2

4p2
e22pV^ J̄(ra1 ,ra2)&2 iVv(a11a2)/v8

3F ]2

2]a1]a2
^F~ra1 ,ra2!eir (a12a2)&2

1 i S ]

]a1
2

]

]a2
D ^F~ra1 ,ra2!eir (a12a2)&

3^F~ra1 ,ra2!reir (a12a2)&G . ~142!

Instead of Eq.~90!, useful for large-V asymptotics, one ob-
tains

r 2~V!

511H E
0

`

da1E
2`

0

da2e22pV^ J̄(ra1 ,ra2)&2 iVv(a11a2)/v8

3@^rJ0
2~2rA2a1a2!eir (a12a2)&2

1^rJ1
2~2rA2a1a2!eir (a12a2)&2#1c.c.J . ~143!

Here ^ f (r )& denotes the mean value over all residues:

^ f ~r !&5
1

N (
j 51

N

f ~r j !; ~144!

functionsJ̄(a1 ,a2) andF(a1 ,a2) are defined in Eqs.~78!
and ~A11! and v and v8 are ‘‘bare’’ and ‘‘renormalized’’
coupling constants@see Eqs.~37! and ~38!#.

As in Sec. IV it is of interest to compute the behavior
the two-point correlation function at small and large ener
differences. WhenV→0, integration by parts as in Sec. IV
leads to
6-11
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r 2~V!→VA, ~145!

where

A5E da1da2

4p2 F i

2
^F~ra1 ,ra2!r 2eir (a12a2)&

3^F~ra1 ,ra2!eir (a12a2)&2

1^F~ra1 ,ra2!reir (a12a2)&2^F~ra1 ,ra2!eir (a12a2)&G .
~146!

Using Eq.~A11! this triple sum is transformed to the form
@cf. with Eq. ~83!#

A52 i
p

N3 (
i , j ,k51

N S 1

2
r j

21r j r kD
3E

0

`

jdjJ0~r ij!J0~r jj!J0~r kj!

3E
0

`dh

h
ei (r i1r j 1r k)(h11/h)j/21c.c. ~147!

According to Eq.~A8! the last integral equalsipH0
(1)@(r i

1r j1r k)j#; therefore

A5
2p2

N3 (
i , j ,k51

N S 1

2
r j

21r j r kD
3E

0

`

jdjJ0~r ij!J0~r jj!J0~r kj!J0@~r i1r j1r k!j#.

~148!

Taking into account Eq.~85!, and symmetrizing the answe
one obtains

A5
p

6

1

N3 (
i , j ,k51

N A~r i1r j1r k!
3

r i r j r k
. ~149!

Of course, when all residues are equal,A5pA3/2 as in Eq.
~89!.

WhenV→`, from Eq. ~143! one obtains

r 2~V!→11^r &2E
0

`

da1E
2`

0

da2

3e2V^r &[p(ua1u1ua2u)] 2( i /v8)(a11a2)1c.c.

511
2

V2~p211/v82!
, ~150!

which differs from Eq.~92! only by a suitable definition of
the coupling constant.

Note that Eq.~149! is valid only for nonzero values of th
residues. Otherwise, the prefactorA formally diverges. This
03620
divergence is a consequence of the simple fact that wher j
50 there exist certain energy levels exactly equal to unp
turbed levels. Therefore, the set of new energy levels c
sists of two parts. The first includes energy levels which
changed by the perturbation. Their correlation function
given by the formulas above, where only nonzero resid
are taken into account. The second part consists of en
levels which are not changed by the perturbation. Their c
relation functions are the same as for the Poisson pro
and, in particular, they do not display level repulsion. As t
cross-correlations between~a finite number! of the old and
new energy levels disappear whenN→`, the resulting sta-
tistics is a superposition of two independent distributio
and, in general, it will not have level repulsion@i.e., R2(e)
Þ0 whene→0].

The above case is realized e.g., when ad-function poten-
tial @Eq. ~11!# is added to a rectangular billiard with th
Dirichlet boundary conditions and the positions of the sing
lar point @xW05(x0 ,y0)# are commensurable with the corre
sponding sides of the rectangular (a and b). In this model
unperturbed wave functions are determined by two integen
andm,

cnW5
2

Aab
sinS p

a
nxD sinS p

b
myD ~151!

and the residues are

r nW5
4

ab
sin2S p

a
nx0D sin2S p

b
my0D . ~152!

If

x0

a
5

p1

q1
,

y0

b
5

p2

q2
~153!

for coprime integerspi andqi there exists only a finite num
ber of different residues depending on valuesn mod q1 and
m mod q2. In particular, whenn is divisible by q1 or m is
divisible by q2 , r nW50. This means that for all these value
of n andm wave functions and energy eigenvalues will n
be changed by the perturbation, and the resulting distribu
~included all energy levels! will not describe level repulsion

Another interesting case corresponds to a model when
residues are also independent random variables with a p
ability dm(r ). If r j never take very small values~more pre-
cisely, the mean value of 1/Ar is finite! the only modification
is that a mean value over residues,^ f (r )&, should be taken
over the given distribution i.e., instead of Eq.~144! one has
to use

^ f ~r !&5E f ~r !dm~r !. ~154!

In particular the value of the prefactorA is
6-12
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A5
p

6E dm~r 1!dm~r 2!dm~r 3!A~r 11r 21r 3!3

r 1r 2r 3
.

~155!

However, if the probability of small values of residues
large, certain expansions should be modified. A natural
ample is, e.g., the Seba billiard with Dirichlet boundary co
ditions, when ratios of the positions of the singularity to t
corresponding sides@as in Eq.~153!# are noncommensurabl
irrational numbers. In this caser n , defined in Eq.~152!, are
equivalent to random variables

r fW 5
4

ab
sin2f1 sin2f2 , ~156!

where anglesf1 andf2 are uniformly distributed between
andp.

Now the two-point correlation function at smallV will
differ from Eq. ~145!. Indeed, a formal calculation of pref
actor ~155! shows that it diverges at smallr, and that its
leading behavior is

A→ p

2
^r &K 1

Ar
L 2

. ~157!

However, for variable~156!

^r &5
4

p2ab
S E

0

p

sin2f df D 2

5
1

ab
~158!

and

K 1

Ar
L 5

Aab

2p2 S E
f0

p df

sinf D 2

'
Aab

2p2
ln2f0 , ~159!

wheref0 is a cutoff of the integration overf. With loga-
rithmic accuracyf0 is proportional toV, f0→V/V0, and,
whenV→0,

r 2~V!→ 1

8p3
V ln4~V/V0!. ~160!

The results of numerical calculations of 100 000 levels of
Seba billiard with Dirichlet boundary conditions@with irra-
tional ratios~153! andv851] are presented in Figs. 3 and
In Fig. 3 the cumulative nearest-neighbor distribution is pl
ted. The dashed and thin solid lines are the same as in Fi
the dotted line corresponds to the Poisson distribution

NP~s!512e2s. ~161!

Note that the computed distribution is quite far from all sta
dard examples. Though the resulting distribution is close
the Poisson distribution than the one for a Seba billiard w
periodic boundary conditions~see Fig. 1!, one can check tha
this difference will be present for all nonzero values of t
coupling constant~and in particular whenv8→`).

The two-point correlation function is shown in Fig. 4. Th
limiting behavior for small@see Eq.~160!# and large@see Eq.
03620
x-
-

e

-
1;

-
o
h

~150!# values of arguments are also indicated for compari
by thick solid lines. The value ofV0 in Eq. ~160!, V0
552.25, has been obtained by fitting expression~160! to
numerical result for smallV.

VIII. CONCLUSION

We have analytically computed the two-point correlati
function for zeros of random meromorphic functions with
large number of poles, when these poles are indepen
random variables. It was demonstrated that the statistic
these zeros corresponds to a distribution with level repuls
which differs from known examples. The resulting distrib

FIG. 3. Nearest-neighbor distribution for a Seba billiard w
Dirichlet boundary conditions. The dashed line is the GOE res
The thin line is the semi-Poisson curve. The dotted line is the P
son prediction.

FIG. 4. The two-point correlation function for a Seba billia
with Dirichlet boundary conditions. The solid lines correspond
the asymptotics@Eqs.~160! and~150!# for small and large values o
the energy difference.
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tion is not universal but depends on residues.
A natural example, where energy levels obey such me

morphic equation, corresponds to a rectangular billiard w
a short-range impurity, and our results show the spectral
tistics of these models. It is of interest that different boun
ary conditions give very different results. Even th
asymptotic behavior for small energy difference is differe
@cf. Eqs.~80! and ~160!#.

We also proposed methods which permit one to find
behavior of the two-point correlation function at small a
large arguments without a knowledge of the exact soluti
These methods can be applied for cases where exact
tions are not available.

APPENDIX

The purpose of this appendix is to compute the main
tegral @Eq. ~52!#:

I ~a1 ,a2!5E
2W

W F12expS i
a1

E12e
1 i

a2

E22eD Gde.

~A1!

Let us first derive a few useful relations,

S ]

]a1
2

]

]a2
D J~a1 ,a2!

5 ivE
2`

`

expS i
a1

E12e
1 i

a2

E22eD de

~E12e!~E22e!
,

~A2!

where

v5E12E2 . ~A3!

In this integral we perform a change of variable

E12e5
v

11t
. ~A4!

Now

E22e52
tv

11t
, ~E12e!~E22e!52

tv2

~11t !2
,

de5
v

~11t !2
dt. ~A5!

Hence

S ]

]a1
2

]

]a2
D J~a1 ,a2!

52 i expS i
a12a2

v D E
2`

`

expF i
a1

v S t2
a2

a1t D G dt

t
.

~A6!
03620
o-
h
a-
-

t

e

.
lu-

-

The following standard integrals will be useful for us~see
Ref. @14#!. When Imm.0 and Imb2m,0,

E
0

`

tn21 expF i
m

2 S t2
b2

t D Gdt52bneinp/2K2n~bm!,

~A7!

and when Imm.0 and Imb2m.0,

E
0

`

tn21 expF i
m

2 S t1
b2

t D Gdt5 ipbne2 ipn/2H2n
(1)~bm!.

~A8!

HereKn(x) andHn
(1)(x)5J1(x)1 iY1(x) are the Macdonald

and Hankel functions, respectively.
Note thatK0(x) is a real function; therefore,

E
2`

`

expF i
a1

v S t2
a2

a1t D G dt

t

5E
0

`

expF i
a1

v S t2
a2

a1t D G dt

t
2c.c.

5H 0 if a1a2.0

2p iJ0S 2
2

v
Aa1a2D sgn~a1! if a1a2,0,

~A9!

andJ0(x) is the Bessel function of zero order. Finally,

S ]

]a1
2

]

]a2
D J~a1 ,a2!5expS i

a12a2

v DF~a1 ,a2!,

~A10!

where

F~a1 ,a2!52pJ0S 2

v
A2a1a2DQ~2a1a2!sgn~a1!,

~A11!

Q(x)51 if x.0, andQ(x)50 if x,0. Note that

]2

]a1]a2
F~a1 ,a2!5

1

v2
F~a1 ,a2!. ~A12!

Using the same method one can prove the following se
equalities:

]2

]a1]a2
J~a1 ,a2!52

i

v
expS i

a12a2

v DF~a1 ,a2!.

~A13!

]2

]a1
2

J~a1 ,a2!5expS i
a12a2

v D ]

]a1
F~a1 ,a2!.

~A14!
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]2

]a2
2

J~a1 ,a2!52expS i
a12a2

v D ]

]a2
F~a1 ,a2!.

~A15!

]4

]a1
2]a2

2
J~a1 ,a2!52

1

v2 S ]

]a1
2 ]a2D

3FexpS i
a12a2

v DF~a1 ,a2!G .
~A16!

Note that the differentiation of functionF produces thed
functions coming from the factor

Q~2a1a2!sgn~a1!5 1
2 @sgn~a1!2sgn~a2!#. ~A17!

From Eq.~A14! it follows that the second derivative

]2

]a1
2

J~a1 ,a2!5f1~a1 ,a2! ~A18!

is known. Therefore,

J~a1 ,a2!5J~0,a2!1
]J~0,a2!

]a1
1E

0

a1
~a12y!f1~y,a2!dy,

~A19!

whereJ(0,a2) and]J(0,a2)/]a1 are values ofJ and its first
derivative ata150.

In Sec. III it was demonstrated that

J~0,a2!5pua2u,

and, symmetrically,

J~a1,0!5pua1u.

As the second derivatives is equal to zero whena1a2.0,
the expression ofJ in these regions, which is continuou
when crossing thea1 anda2 axes, is

J~a1 ,a2!5p~a11a2!sgn~a2!. ~A20!

It is clear that the functionJ(a1 ,a2) is a continuous function
but with discontinuous first derivatives. The values of the
discontinuities follow from the above discontinuity of th
function F.

Therefore, in the region

a1.0, a2,0, a11a2,0

~which is the continuation of the lower left squarea1,0,
a2,0 through the negativea2 axis! the functionJ(a1 ,a2)
should take the form

J~a1 ,a2!52p~a21a1!12pa1 exp~2 ia2 /v!

1E
0

a1
~a12y!f0~y,a2!dy, ~A21!
03620
e

where

f0~a1 ,a2!5expS i
a12a2

v D ]

]a1
f~a1 ,a2!, ~A22!

and

f~a1 ,a2!52pJ0S 2

v
A2a1a2D ~A23!

coincides with the functionF but without a discontinuous
factor.

After integration by parts and certain transformations, o
obtains that in all regions

J~a1 ,a2!5p~a11a2!sgn~a2!

2pF i ~a11a2!GS 2
a2

v
,
a1

v D
1@a2J0~j!1 iA2a1a2J1~j!#expS i

a12a2

v D G
3@sgn~a1!2sgn~a2!#, ~A24!

wherej5(2/v)A2a1a2 and

G~x,y!5eiyE
x

`

J0~2Ayt!eitdt. ~A25!

The functionG(x,y) obeys the relations

]G~x,y!

]x
52J0~j!eix1 iy, ~A26!

]G~x,y!

]y
52 iAx

y
J1~j!eix1 iy, ~A27!

wherej52Axy. To prove the second identity, note that

]G~x,y!

]y
5eiyE

x

`S iJ01J08A t

yD eitdt. ~A28!

But the integrand is equal to

2 i
]

]t
@At/yJ08~2Aty!eit !], ~A29!

and asJ0852J1 one obtains the above relation.
The functional equation

G~x,y!1G~y,x!5 i 1 iJ0~j!eix1 iy ~A30!

can be proved by comparing derivatives of both sides,
noting that the integral~Ref. @14#, p. 50!

E
0

`

J0~at!e2gt2tdt5
1

~2g!
expS 2

a2

4g D ~A31!

requires thatG(0,y)5 i .
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Wheny,x the above integral can be taken indefinitely
parts, which leads to the expansion

G~x,y!5 ieix1 iy (
n50

`

~2 ih!nJn~j!, ~A32!

whereh5Ay/x andj52Axy. The above collection of for-
mulas permits one to find the expansion ofG(x,y) for all
values of its arguments. Another useful representation of
integral is
8
tin

et

03620
ur

J~a1 ,a2!5p~a11a2!sgn~a2!2pvF i ~y2x!G~x,y!

1S x
]

]x
2y

]

]yDG~x,y!G@sgn~x!1sgn~y!#,

~A33!

wherex52a2 /v andy5a1 /v.
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